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Oscillatory flow inside a square cavity 

By P. W. DUCK 
Department of Mathematics, University of Manchester 

(Received 15 October 1981) 

The flow inside a square cavity, generated by a uniform oscillatory motion of the upper 
cavity wall, is investigated. Numerical solutions of the full unsteady Navier-Stokes 
equations are computed for a selection of Reynolds’ numbers and frequency para- 
meters in the range 0-600. These results show that the steady streaming component 
of the flow, in general, comprises two main, equal, contrarotating eddies, situated in 
the upper half of the cavity (one on either side of the cavity centreline) and two 
weaker, equal, contrarotating eddies, situated in the lower section of the cavity (again 
one on either side of the cavity centreline). 

1. Introduction 
The problem of the flow inside a rectangular cavity, generated by the steady uniform 

translation of one of the walls, has been of much interest in recent years, to fluid- 
mechanics workers and numerical analysts alike. To the former, the motion represents 
a simple example of steady flow involving closed streamlines, the importance of this 
being its relevance to separated flows. The interest to the numerical analyst is a 
challenging aumerical problem (few analytic solutions to this type of problem are 
possible, even for regimes in which inertia terms are unimportant), because of the non- 
linearity of the (Navier-Stakes) equations of motion, and because of the presence of 
regions in which the solution changes rapidly. 

Two of the earliest attempts at solving the (steady) square-cavity problem were 
made by Kawaguti (1961) and by Burggraf (1966), who presented finite-difference 
solutions for Reynolds numbers in the range 0-64 and 0-400 respectively. Even a t  
these moderate Reynolds numbers, Burggraf (1966) was able to show that the results 
were in quantitative agreement with the prediction of Batchelor (1956) for infinite 
Reynolds number that the flow comprised a significant inviscid rotational core. 

Since this work, a number of different numerical methods have been introduced, 
using the square-cavity problem as a test case (e.g. Greenspan 1968; Vahl Davis & 
Mallinson 1976; Shay 1981). In  addition Tuann & Olson (1978) give a review of a 
number of other studies of this type. 

One point that is made manifest repeatedly by these studies is that it is imperative 
to use very small mesh sizes in any differencing scheme for large Reynolds’ numbers. 
This may be interpreted physically as meaning that there must be an acceptable 
number of grid points inside any boundary layers. 

As noted earlier, any progress analytically on problems of this type is difficult, al- 
though Pan & Acrivos (1967) do present some analytic (and numerical) solutions for the 
creeping-flow solution (i.e. zero Reynolds number) for situations in which the aspect 
ratio of the cavity (i.e. ratio of length to height of the cavity) is either large or small. 
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In  this paper we study the motion generated inside a square cavity, when one of the 
walls is performing uniform oscillatory motion, in order to gain some insight into 
unsteady motion involving closed streamlines. We shall pay particular attention to 
the ‘steady streaming’ arising out of the nonlinearity of the Navier-Stokes equations 
of motion. 

Much work to date has been carried out on the steady streaming arising from purely 
oscillatory forced motion, although most of these studies have fallen into two 
categories enabling progress to be made analytically. The first of these categories is 
that in which the amplitude of oscillation input is very much smaller than a typical 
body dimension; for example, the work of Riley (1965) and Stuart (1966), who studied 
the flow resulting from an unbounded fluid containing a circular cylinder performing 
small-amplitude oscillations. (A number of other similar problems have also been 
attempted, in various parameter regions, and these are reviewed by Riley (1967).) 
The corresponding problem, but with the fluid bounded by a second, larger, fixed 
circular cylinder, has been investigated experimentally by Bertelsen ( 1974) and 
theoretically by Duck t Smith (1979). The second class of problem is that in which a 
typical surface dimension is very much smaller than the size of oscillation of the fluid 
particles, such as the work of Lyne (1971). In  both these categories, the ratio of a 
typical body dimension to the typical size of fluid-particle oscillation provides a small 
(large) parameter, with which some form of linearization may be possible. 

In  the problem under consideration we concern ourselves primarily with a class of 
problem that requires a numerical attack (but certain asymptotic structures in various 
parameter limits will be noted), since no such linearization is possible. 

2. Problem formulation 
The layout of the problem under consideration is shown in figure 1. We aasume that 

the flow is two-dimensional and laminar, and is described by the unsteady form of the 
Navier-Stokes equations, namely 

au * - + (u*. V) u* = vv%l* - vp*, 
at* 
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and by continuity, v.u* = 0, (2.2) 

where u* is the dimensional velocity vector, p* is the dimensional pressure, and v is 
the kinematic viscosity. We now introduce the non-dimensional quantities 

u = u*/Uo, x = x*/a ,  y = y*/a,  t = wt*, (2.3) 

= ($g, -@J. (2.4) 

and introduce a (non-dimensional) stream function by 

Combining the Navier-Stokes equations, continuity and (2.4) yields 

Here R is a Reynolds number, namely Uoa/v, and is a frequency parameter, namely 
wa8/v. Physically, an increase in the size of R may be interpreted as an increase in the 
amplitude of oscillation of the driving wall, whilst an increase in the size of P mrre- 
sponds to a higher frequency of oscillation of the moving wall. The (non-dimensional) 
boundary conditions me then 

@ = O  ( x = O , l ;  O Q y Q  l), 

* = o  (y=O, l ;  O Q x Q 1 ) ;  

@ . , = O  ( y = O ;  OQxQl), 
$bu = cost ( y  = 1; 0 Q x Q l), 

@% = 0 (z = 0 , l ;  0 Q y Q 1). 

In 5 3 we consider a numerical solution to (2.5)-(2.7). 

3. Method of solution 
We now consider the numerical solution of the mathematical problem posed by 

(2.5)-(2.7). Following previous work on the corresponding steady problem, we find it 
convenient to introduce a new quantity 

5 = -V2$ (3.1) 
(equivalent to the vorticity). Equation (2.5) may then be split into two second-order 
equations, namely (3.1) and 

a5 a(52 = vsg. 
P3i+Rm 

Since the fluid motion is forced by a purely harmonic wall motion, we assume that 
the solution to the problem is also periodic (i.e. there are no secular solutions), and so 
the solution may be decomposed in time into a Fourier series: 

m 

(3.3b) 

(3.4) 
where we must have 

(* denotes complex conjugate). 
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An alternative approach to treating time dependence would be to use a time- 
marching method, starting from some prescribed initial conditions. Indeed, an early 
attempt to study the steady flow inside rectangular cavities by Simuni (1964),involved 
just such a procedure, the steady solution being considered as the large-time limit of 
the unsteady equations of motion. However, our Fourier series approach is thought 
to have a number of advantages, including the following. (i) An automatic 'building in' 
of the expected periodicity of the solution, bypassing any transient solutions. (ii) The 
method gives a better insight into the Werent components of the solution; in particular 
the steady streaming component of the flow is evaluated during the course of the 
computation (marching methods would require an additional integration over a full 
cycle in order to evaluate the steady streaming). (iii) Certain symmetries in the solution 
may be exploited for the case of a purely oscillatory upper wall, which effectively 
halves the solution domain. 

Having expanded $ and 5 in the form (3.3), we now have the following system to 
solve for n = 0, f 1, f 2, ... : 

Cn + Va$n = 0, ( 3 . 5 4  

n K n - V a 5 n  + R ( $ ~ , u C o , z - ~ n , u ~ o , ~ )  = R (= 2 -03 [$n-*,zQ,Y-$,.~~-~,zl, (3.5b) 
m 

j + n  

O Y ' 'I} for all n, 
$, = 0 (x= 0 , l ;  

$ n = o  (y=O, l ;  O G X ' l )  

subject to 

$ n , u = o  (y=O; O G X ' l )  

$ n , 2 = o  (x=O, l ;  O < y <  1) 
I (3.7) 

We now discretize the above system, using second-order finite differencing. If Ax 
and Ay are the mesh sizes in the x- and y-directions, then for example 

( 3 . 8 ~ )  

We next truncate the series (3.3) at n = f N, say, and so at any given x-station, for 
each n, the set of difference equations for 0 Q y Q 1 may be expressed in the matrix 
form 

(3.9) 

where L, is a square matrix, each row of which contains just six elements centred 
around the diagonal (and is thus suitable for Gaussian elimination). To be rather more 
precise, L, consists entirely of 2 x 6 submatrices, each submatrix corresponding to 
the differenced form of (3.5) (with each row of these submatrices corresponding to one 
of the equations (3.5)) at each y-station. As much of the left-hand side of (3.5) as 
possible was included in L,, the remaining quantities being included (along with all 
the right-hand-side terms) in the column vector R,. x, is the column vector corre- 
sponding to the unknowns $,(x, y) and [,(x, y) (x constant, 0 Q y < 1). 

Because of (3.4), we need only consider n = 0,1,2,. .., N. Further, because of the 
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oscillatory nature of the forcing through the wall motion, and the symmetry of the 
motion about x = 3, we must have 

The outcome of this is that 

$(t+n,1-x,y) =-$(t,x,y), C(t+n,l-xX,y) = -C(t,x,y). (3.10) 

$zn(1-x?Y) = -$zn(X,Y), Czn(l-x79) = -Czn(X,Y), (3.11 a)  

(3.1 1 b) $Zn-1(1 - 2 , Y )  = $Zn-l(X, Y), Czn-Al- 5, Y) = Czn-l(x, Y). 
From (3.11a) note that (3.12) 

Equation (3.11) enables us to halve the domain of x we need to consider; hence we 
solve in just 0 < x < &. 

The treatment of Cnear the walls also requires a certain amount of attention, 
although here we may follow Burggraf (1966). The problem arises because & is not 
prescribed on the walls, whilst the difference equations that are set up at y = Ay and 
y = 1 - Ay require &(x, 0) and d ( x ,  1) respectively. Considering first the lower wall, 
from our definition of Cn 

. - .  
But $Jx, 0) = 0, and also 

(since $n,y(x, 0) = 0), and so 

Cn@, 0) = - 2@n(x, AY)/(AY)z. (3.14) 

(An alternative to (3.14), which may also be used, comes directly from the no-slip 
condition on the wall, namely $%(x, Ay) = &$,(x, 2Ay).) 

The treatment on the upper wall for n + & 1 is identical, but for n = _+ 1 is slightly 
changed since $*1, Jz, 0) = 4. As a result 

(3.15) 

(Alternatively we may use $*,(x, 1 - Ay) = &$*l(x, 1 - 2Ay) + )Ay.) 
Notice that Cn(0, y), which is required at the x = Ax station, may be obtained in 

exactly the same manner M (3.14) to give 

Cn(0, Y) = - 2$n(Ax, Y ) / ( W .  (3.16) 

The iteration procedure adopted was to start at x = Ax, to solve for the entire range 
of y (i.e. (3.9)) for each successive n, then to move to x = 2Ax, and to repeat the process 
until x = a is reached. At all times the latest information available waa used in the 
difference scheme (i.e. the iterative scheme was of a line Gauss-Seidel form, although 
as described later the more difficult examples required a certain amount of under- 
relaxation). At x = & it is only necessary to solve for the odd-n terms, as a result of 
(3.12), and we use the symmetry condition in the following manner: 

Y)- (3.17) 
Having obtained a solution at x = &, we then repeat the process until convergence is 
obtained. 
As a final general check of the computer program, a number of the steady examples 

of Burggraf (1966) were used (the program needed only minor modifications for this 
purpose, although the aforementioned symmetries do not exist) and was found to 
produce satisfactory agreement. 

l u x ,  - AY) = $n(% AY) 

Cdx, 1) = - 2$*1(X, 1 - AY )/(AyY - 1/AL\y. 

$Zn-1(4 + Ax, Y) = @an-1(* -Ax, Y), CZn-l(& + Ax, Y) = Czn-1(4 - 

F L Y  I22 8 
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FIQURE 2. For caption see facing page. 

4. Results and discussion 
The first set of results (figures 2 d )  correspond to the example R = 0, /3 = 1, and so 

represent physically a very small-amplitude, fairly low-frequency oscillation of the 
upper wall. Because of the lack of inertia terms (since R = 0), the system (3.1), (3.2) is 
linear, with n = & 1 being the only non-zero terms in (3.3), and so (3.5) reduces to 

* i$L = W*I. (4.1) 
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FIGURE 2. (a) Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = 0 (p = 1, 
R = 0). (b )  Upper wall shear at t = 0 (/3 = 1, R = 0). (c) Streamlines (solid lines) and constant- 
vortioity l i n i  (broken lines) at t = +a (p = I ,  R = 0). (d) Upper wall shear at t = tlr (fl = 1, 
R = 0).  

8-2 
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In  spite of the linear nature of this system, analytic solutions in closed form appear 
not to be possible by standard methods. Indeed, this also applies to the corresponding 
steady example, although Burggraf (1966) did attempt to use an approximate con- 
formal-mapping technique, following Muskhelishvili (1963), but found that in general 
finite-difference methods were preferable. 

Because the solution of (4.1) involves the study of just one Fourier term, it waa 
feasible to use a particularly small fhite-difference grid size in this example, in both 
the x- and y-directions, namely Ax = Ay = 0.0125. Figure 2 (a) (solid lines) shows the 
plot of selected streamlines at the time t = 0, corresponding to  the instant when the 
moving wall possesses its greatest velocity, namely of value unity directed along the 
positive x-direction. In addition to one main eddying motion, we see a small region of 
contrarotating fluid, in both the lower corners of the cavity. Such a phenomenon is 
commonly observed in the steady case. Figure 2 ( a )  also shows the corresponding 
selected lines of constant vorticity (broken lines), and figure 2 (b )  is a plot of the distri- 
bution of vorticity (and hence wall shear) on the upper (moving) wall at  t = 0. Note 
that for R = 0 all stream-function and vorticity distributions will be symmetrical 
about x = &, and also 

$w+.n,x,y) = -$W,X,Y), f;(t+.n,x,y) = -!$,X,Y). (4.2) 

Figures 2 (c, d )  correspond to figures 2 (a, b )  respectively, but are evaluated at the 
time t = )n, the instant when the upper wall is at rest (and about to move in the 
negative x-direction), and so the motion is a measure of the time lag in the fluid motion. 
At this particular instant, the motion appears to be considerably weaker than at  
t = 0. This may be explained by considering the limit /3 -+ 0, which is the quasisteady 
limit. For /3 = 0, the results of Burggraf (1966) apply instantaneously, and conse- 
quently if the upper wall were at rest there would be no fluid motion. The results for 
t = 0 correspond, remarkably, with the results of Burggraf (1966) for R = 0, and so 
the solution for /3 = 1 appears quasisteady to a good approximation. 

The neighbourhoods of the two upper corners appear to be regions of high solution 
gradient (see for example figure 2b) .  It is to be expected that the flow in these regions 
is described by the (steady) corner-flow solutions of Dean & Montagnon (1949) and 
Moffatt (1964) (note that such analysis is valid for unsteady flows sufficiently close to 
the corner). Accordingly, if we assume that the flow in the region of the corner is 
governed by Stokes’ equation (i.e. acceIeration terms are negligible), whichis arational 
msumption if the solution is analytic in this region, then, following Moffatt (1964), the 
stream function near the corner x = 0, y = 1 (for example) may be written as 

where 

8 = arctan- T =  [x2+(y-l)2]k (4.4) x ’  

The error involved in neglecting the acceleration terms is 0(/3rP), and so, as the 
oscillation increases in frequency, the region of validity for which Stokes’ equation 
is valid decreases. It is likely, also, that the further results given by Moffatt (1964) 
pertaining to flows near corners apply near both the lower cavity corners. Similar 
eddies were found in the corresponding steady-flow problem by Burggraf (1966) and 
also by Pan & Acrivos (1967). The latter authors did an extensive investigation into 
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these eddies for zero Reynolds numbers, and found a sequence of smaller and smaller 
corner vortices (in excellent agreement with the theory of Moffatt (1964)). It would 
appear probable that a similar sequence occurs in the present problem, but that 
the resolution of the fbite-difference scheme is insufficient to reveal their existence. 

The next set of results (figures 3a-d) corresponds to  R = 0, /3 = 100, and so again 
it was just necessary to consider one Fourier term (again a mesh size of 0.0125; was 
used in both the x- and y-directions), and the remarks concerning the variou8 sym- 
metries of the previous set of results again apply. Comparing the flow at t = 0, as 
shown in figures 3( a, b), with the corresponding figures of the previous set of results, we 
see that the general trend is an overall weakening of the flow away from the moving 
wall. For example the main eddying motion is weaker in magnitude, whilst its centre 
hw moved towards the upper wall. A further difference is that the contrarotating 
regions of fluid, whilst still present at the two lower corners of the cavity, are reduced 
significantly in size. The general trend as /3 + co appears to be a concentration of the 
flow within a boundary layer on the upper wall, with a reduction in the flow through- 
out the cavity away from this wall. 

An inspection of the various quantities in the Navier-Stokes equations of motion 
as /3 +- a0 suggests (away from the two vertical walls x = 0, x = 1) a balance between 
the horizontal acceleration term, and the (dominant) viscous term to give 

/3&Jut ~ u u u u .  

Defining a new vertical lengthscale 

Y =/34(l-y) = O(l), (4.5;) 

then @.pYt-+YYYY = 02 (4.6) 

which is Stokes' (unsteady) equation. If we now assume that in the limit /3 --+ co the 
motion in the core of the cavity disappears (to leading order), a result suggested by our 
numerical results, then we may impose the boundary condition 

$ y + o  &8 Y+m. (4.7) 

@ = 0, @y = -/3-tcosty ( 4 4  

Equation (4.7), in conjunction with the conditions on Y = 0, namely 

yields the following solution for the streamfunction: 

which is a form of Stokes' (unsteady) solution. Although the flow in the vicinity of the 
corner regions will be more complicated (partly described by (4.3)), (4.9) does provide 
an insight into the high-frequency limit, suggested by the results of figure 3. 

The thinning of the boundary layer is predicted because of the scaling (44, which 
indicates that the boundary layer reduces as /I-4. In addition this gives a measure of 
the reliability of our numerical results. We may expect a boundary-layer thickness 
0(0.1), whilst our mesh size is 0.0125, and so there should be a rewonable resolution 
of the boundary-layer profile by our finite-difference scheme. Equation (4.9) also 
suggests little horizontal variation in the flow near y = 1 (away from the two vertical 
walls), a feature clearly observed in figure 3(a).  
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FIQURE 3. For caption see facing page. 

The flow for R = 0, B = 100 at t = #T is illustrated in figures 3(c, d),  and appears 
rather weaker than the flow at  the previous time t = 0. However, in contrast to the 
solution for t = 0, the flow at t = #T is quite markedly stronger than that for p =  1 a t  
t = in. The physical explanation of this would appearto be that, at the higher frequency 
parameter ofp = 100, the greater importance of the acceleration terms in the equations 
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FIGURE 3. (a) Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = 0 (p = 1, 
R = 0). (b )  Upper wallshear at t = 0 (/3 = 100, R = 0). (c) Streamlines (solidlin-) endconstant- 
vorticity lines (broken lines) at t = (p = 100, R = 0). (d) Upper wall sheer 8t t = &r (p = 100, 
R = 0) .  
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of motion introduces more ‘lag’ in the flow, compared with the comparatively 
quasisteady results of /3 = 1, and this effect offsets the other trend of weakening of the 
flow away from the moving walls. 

We now go on to consider a number of sets of results for non-zero Reynolds numbers. 
Before actually considering these solutions in detail, it is useful to note a number of 
details, in particular differences from the R = 0 results. 

Because all Fourier terms are triggered through the nonlinearity of the governing 
equations, computing times were significantly longer, and for this reason a rather 
coarser grid size was used in the finite-difference scheme (Ax = Ay = 0.025). In order 
to keep a check on the accuracy, in every case, a control computation was used, using 
an even coarser grid (Ax = Ay = 0.05). In all cases five Fourier terms were computed 
(equivalent to using nine terms in (3.3) because of the property (3.4)), adding an extra 
term to the highest Reynolds number tackled resulted in a change of no more than 
2 % in the most sensitive regions, namely the upper corner regions, and considerably 
less in the rest of the flow field. Approximately 800 iterations were required for five- 
figure accuracy of convergence. Particularly at high Reynolds numbers, the iterative 
scheme appeared to become less stable and, as an aid to convergence, a certain amount 
of under-relaxation was applied, where, instead of updating the stream function 
completely by the latest computed value e m p ,  the following formula was used: 

(4.10) 

where @2d waa the previous value andfis the relaxation parameter (a similar formula 
was used for d(z,y)). Typicallyf = 0.6 was chosen (although no exhaustiye optimi- 
zation process was carried out). 

Results will be presented, as before, a t  t = 0 and t = in; however, the property 
(3.10) enables us to use these two sets of results to obtain distributions every in interval 
throughout the entire period of the oscillation. Note that the inclusion of inertia terms 
destroys the rather simple antisymmetry condition (4.2) and also the general symmetry 
about x = 4 present when R = 0. 

One h a 1  point of detail is that, in all the preceding sets of computation, we have 
deliberately chosen /? = R. With this condition, it is to be expected that there will be 
the maximum amount of interaction between the various physical processes. If /3 << R, 
then we may expect that the flow will become quasisteady (with the results of Burggraf 
(1966) applying instantaneously), whilst, for /3 $. R, our previous results for R = 0 
suggest that the flow will become concentrated within a boundary layer on the moving 
wall. 

Figures a(&) relate to the point in parameter space R = /3 = 200. Compared to the 
previous results, there appears a further general weakening of the flow in the main 
body of the fluid, along with a further intensification of the flow inside the boundary 
layer situated on the upper wall. This boundary layer is likely to be of thickness 
O(R-4) - O(p-4) - O(0.07). At t = 0 (figure 4a) the centre of the main eddying motion 
appears to have moved to the right of centre of the cavity, and further towards the 
upper wall. The two small regions of contrarotating flow in the two lower corners 
observed previously seem to have disappeared (or are too small to be resolved by the 
finite-difference scheme), whilst at  t = &r (figure 4b) these two regions have reappeared, 
the left-hand example of which extends along the entire length of the left-hand vertical 
wall. 



Oscillatory jlow inside a square cavity 227 

Particularly interesting in problems of this type is the steady streaming motion. 
Although the fluid is forced in a purely oscillatory manner, the nonlinearity of the 
inertia terms in the Navier-Stokes equations provides a mechanism for forcing a steady 
component of motion. Because of the antisymmetry condition (3.11 a), the streamlines 
and constant-vorticity lines corresponding to this steady streaming are only shown 
in the left-hand side of the cavity. This component of motion (figure 4c)  is seen to take 
on the form of two main contrarotating eddies, with two further medium-sized, but 
weaker eddies, one in the region of each lower corner. Also shown (figure 4 d )  is the 
distribution of the steady component of wall shear on the moving wall, which for most 
of the length of the wall takes on a linear distribution. 

Figures 5(a-d) correspond to the parameters R = /3 = 400. At t = 0 (figure 5a) 
a further eddy has appeared on the left-hand wall of the cavity, whilst the primary 
eddy has reduced (further) in strength. At t = )T (figure 5 b ) ,  the flow is little changed 
from the R = #I = 200 results, except for the continued trend of a weakening of the 
flow away from the upper wall (and a strengthening of the flow near the upper wall). 
Figure 5 (c)  reveals that the main steady streaming eddy is little changed from before, 
whilst the lower eddy has increased in size. The distribution of steady wall shear 
(figure 5 4  takes on a similar linear distribution to that observed previously (figure 4 4 ,  
but possesses a larger gradient than before. 

Figures 6 ( d )  relate to the final example tackled, R = /3 = 600. Figures 6(a ,b)  
present a similar pattern to figures 5(a, b), whilst continuing the previous trend of a 
weakening of the flow throughout most of the cavity, but with an increase in intensity 
of the flow near the upper wall. Figure 6(c) shows that the steady streamlines and 
constant-vorticity lines also exhibit this trend when compared with figure 5 (c) whilst, 
in figure 6 (d),  the steady component of wall shear takes on the linear distribution with 5 

observed in the two previous cases, but again possesses an increased gradient. 
Inspection of figures 4 (d),  5 (d)  and 6 ( d )  suggests that the steady wall shear varies 

approximately as R4. This may be explained mathematically, since in the neighbour- 
hood of the upper wall the horizontal velocity is (generally) O( i),  whilst the typical 
vertical lengthscale, using similar arguments to those used in deriving ( 4 4 ,  is likely 
to be 0(/3-4) - O(R-*), and the variation of wall shear as R4 then follows. 

No further computations were carried out past R = /3 = 600, since with this choice of 
parameter the (maximum) discrepancy between the actual computation and the 
control computation was approximately 10 yo, and it was felt that any further calcu- 
lations a t  higher Reynolds numbers would be of dubious accuracy. The breakdown of 
solution beyond R = /3 = 600 may be explained by the boundary-layer thickness 
( O ( R f )  - 0(0 .04 ) ) ,  which is comparable to the control grid size (O(0.05)). However, 
as noted previously, an additional term in the Fourier-series representation of the 
stream function and vorticity made little difference to the solution, and the method 
appears to  be an efficient approach to the problem. Such an approach could also be 
used for situations involving more general periodic motions of the upper wall (such 
as pulsatile movements), although certain of the useful symmetries present in the 
oscillatory case considered here (which halve the range of x that need be considered) 
would be lost. 
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FIGURE 4. For caption see facing page. 
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FIGURE 4. (a) Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = 0 
(/? = R = 200). (b )  Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = 
(/? = R = 200). (c) Steady streaming streamlines (solid lines) and constant-vorticity lines (broken 
lies) (B = R = 200). (d) Steady streaming upper wall shear (B = R = 200). 
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FIQURE 6. For caption see facing page. 
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FIGURE 6. (a) Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = 0 
(B = R = 400). (b )  Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = )n 
(B = R = 400). (c) Steady streaming streamlines (solid lines) and constant-vorticity lines (broken 
lines) (B = R = 400). (d) Steady streaming upper wall shear (B = R = 400). 
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FIGURE 6. For caption see facing page. 
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FI~URE 6. (a) Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = 0 
(/? = R = 000). (a) Streamlines (solid lines) and constant-vorticity lines (broken lines) at t = &r 
(/? = R = 600). (c) Steady streamingstremlines (solidlines) and constant-vorticity lines (broken 
lines) (/? = R = 600). (d) Steady streaming upper wall shear (/? = R = 600). 
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